home *** CD-ROM | disk | FTP | other *** search
-
-
-
- DDDDLLLLAAAAEEEEDDDD0000((((3333SSSS)))) DDDDLLLLAAAAEEEEDDDD0000((((3333SSSS))))
-
-
-
- NNNNAAAAMMMMEEEE
- DLAED0 - compute all eigenvalues and corresponding eigenvectors of a
- symmetric tridiagonal matrix using the divide and conquer method
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE DLAED0( ICOMPQ, QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, WORK,
- IWORK, INFO )
-
- INTEGER ICOMPQ, INFO, LDQ, LDQS, N, QSIZ
-
- INTEGER IWORK( * )
-
- DOUBLE PRECISION D( * ), E( * ), Q( LDQ, * ), QSTORE( LDQS, *
- ), WORK( * )
-
- IIIIMMMMPPPPLLLLEEEEMMMMEEEENNNNTTTTAAAATTTTIIIIOOOONNNN
- These routines are part of the SCSL Scientific Library and can be loaded
- using either the -lscs or the -lscs_mp option. The -lscs_mp option
- directs the linker to use the multi-processor version of the library.
-
- When linking to SCSL with -lscs or -lscs_mp, the default integer size is
- 4 bytes (32 bits). Another version of SCSL is available in which integers
- are 8 bytes (64 bits). This version allows the user access to larger
- memory sizes and helps when porting legacy Cray codes. It can be loaded
- by using the -lscs_i8 option or the -lscs_i8_mp option. A program may use
- only one of the two versions; 4-byte integer and 8-byte integer library
- calls cannot be mixed.
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- DLAED0 computes all eigenvalues and corresponding eigenvectors of a
- symmetric tridiagonal matrix using the divide and conquer method.
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- ICOMPQ (input) INTEGER
- = 0: Compute eigenvalues only.
- = 1: Compute eigenvectors of original dense symmetric matrix
- also. On entry, Q contains the orthogonal matrix used to reduce
- the original matrix to tridiagonal form. = 2: Compute
- eigenvalues and eigenvectors of tridiagonal matrix.
-
- QSIZ (input) INTEGER
- The dimension of the orthogonal matrix used to reduce the full
- matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
-
- N (input) INTEGER
- The dimension of the symmetric tridiagonal matrix. N >= 0.
-
- D (input/output) DOUBLE PRECISION array, dimension (N)
- On entry, the main diagonal of the tridiagonal matrix. On exit,
- its eigenvalues.
-
-
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- DDDDLLLLAAAAEEEEDDDD0000((((3333SSSS)))) DDDDLLLLAAAAEEEEDDDD0000((((3333SSSS))))
-
-
-
- E (input) DOUBLE PRECISION array, dimension (N-1)
- The off-diagonal elements of the tridiagonal matrix. On exit, E
- has been destroyed.
-
- Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
- On entry, Q must contain an N-by-N orthogonal matrix. If ICOMPQ =
- 0 Q is not referenced. If ICOMPQ = 1 On entry, Q is a
- subset of the columns of the orthogonal matrix used to reduce the
- full matrix to tridiagonal form corresponding to the subset of the
- full matrix which is being decomposed at this time. If ICOMPQ = 2
- On entry, Q will be the identity matrix. On exit, Q contains the
- eigenvectors of the tridiagonal matrix.
-
- LDQ (input) INTEGER
- The leading dimension of the array Q. If eigenvectors are
- desired, then LDQ >= max(1,N). In any case, LDQ >= 1.
-
- QSTORE (workspace) DOUBLE PRECISION array, dimension (LDQS, N)
- Referenced only when ICOMPQ = 1. Used to store parts of the
- eigenvector matrix when the updating matrix multiplies take place.
-
- LDQS (input) INTEGER
- The leading dimension of the array QSTORE. If ICOMPQ = 1, then
- LDQS >= max(1,N). In any case, LDQS >= 1.
-
- WORK (workspace) DOUBLE PRECISION array,
- If ICOMPQ = 0 or 1, the dimension of WORK must be at least 1 + 3*N
- + 2*N*lg N + 2*N**2 ( lg( N ) = smallest integer k such that 2^k
- >= N ) If ICOMPQ = 2, the dimension of WORK must be at least 4*N +
- N**2.
-
- IWORK (workspace) INTEGER array,
- If ICOMPQ = 0 or 1, the dimension of IWORK must be at least 6 +
- 6*N + 5*N*lg N. ( lg( N ) = smallest integer k such that 2^k >= N
- ) If ICOMPQ = 2, the dimension of IWORK must be at least 3 + 5*N.
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: The algorithm failed to compute an eigenvalue while working
- on the submatrix lying in rows and columns INFO/(N+1) through
- mod(INFO,N+1).
-
- FFFFUUUURRRRTTTTHHHHEEEERRRR DDDDEEEETTTTAAAAIIIILLLLSSSS
- Based on contributions by
- Jeff Rutter, Computer Science Division, University of California
- at Berkeley, USA
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-
-
-
- DDDDLLLLAAAAEEEEDDDD0000((((3333SSSS)))) DDDDLLLLAAAAEEEEDDDD0000((((3333SSSS))))
-
-
-
- SEE ALSO
- INTRO_LAPACK(3S), INTRO_SCSL(3S)
-
- This man page is available only online.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 3333
-
-
-
-